今でもあなたは私の光丶

Kafka(8)延时队列、重试队列

延时队列

两个follower副本都已经拉取到了leader副本的最新位置,此时又向leader副本发送拉取请求,而 leader副本并没有新的消息写入,那么此时leader副本该如何处理呢?可以直接返回空的拉取结果给 follower副本,不过在leader副本一直没有新消息写入的情况下,follower副本会一直发送拉取请求, 并且总收到空的拉取结果,消耗资源。

Kafka在处理拉取请求时,会先读取一次日志文件,如果收集不到足够多(fetchMinBytes,由参数 fetch.min.bytes配置,默认值为1)的消息,那么就会创建一个延时拉取操作(DelayedFetch)以等待 拉取到足够数量的消息。当延时拉取操作执行时,会再读取一次日志文件,然后将拉取结果返回给 follower副本。

延迟操作不只是拉取消息时的特有操作,在Kafka中有多种延时操作,比如延时数据删除、延时生 产等。
对于延时生产(消息)而言,如果在使用生产者客户端发送消息的时候将acks参数设置为-1,那么 就意味着需要等待ISR集合中的所有副本都确认收到消息之后才能正确地收到响应的结果,或者捕获超 时异常。

假设某个分区有3个副本:leader、follower1和follower2,它们都在分区的ISR集合中。不考虑ISR 变动的情况,Kafka在收到客户端的生产请求后,将消息3和消息4写入leader副本的本地日志文件。

由于客户端设置了acks为-1,那么需要等到follower1和follower2两个副本都收到消息3和消息4后 才能告知客户端正确地接收了所发送的消息。如果在一定的时间内,follower1副本或follower2副本没 能够完全拉取到消息3和消息4,那么就需要返回超时异常给客户端。生产请求的超时时间由参数 request.timeout.ms配置,默认值为30000,即30s。

那么这里等待消息3和消息4写入follower1副本和follower2副本,并返回相应的响应结果给客户端 的动作是由谁来执行的呢?在将消息写入leader副本的本地日志文件之后,Kafka会创建一个延时的生 产操作(DelayedProduce),用来处理消息正常写入所有副本或超时的情况,以返回相应的响应结果 给客户端。

延时操作需要延时返回响应的结果,首先它必须有一个超时时间(delayMs),如果在这个超时时 间内没有完成既定的任务,那么就需要强制完成以返回响应结果给客户端。其次,延时操作不同于定时 操作,定时操作是指在特定时间之后执行的操作,而延时操作可以在所设定的超时时间之前完成,所以 延时操作能够支持外部事件的触发。

就延时生产操作而言,它的外部事件是所要写入消息的某个分区的HW(高水位)发生增长。也就 是说,随着follower副本不断地与leader副本进行消息同步,进而促使HW进一步增长,HW每增长一次 都会检测是否能够完成此次延时生产操作,如果可以就执行以此返回响应结果给客户端;如果在超时时 间内始终无法完成,则强制执行。

延时拉取操作,是由超时触发或外部事件触发而被执行的。超时触发很好理解,就是等到超时时间 之后触发第二次读取日志文件的操作。外部事件触发就稍复杂了一些,因为拉取请求不单单由follower 副本发起,也可以由消费者客户端发起,两种情况所对应的外部事件也是不同的。如果是follower副本 的延时拉取,它的外部事件就是消息追加到了leader副本的本地日志文件中;如果是消费者客户端的延 时拉取,它的外部事件可以简单地理解为HW的增长。

时间轮实现延时队列。
TimeWheel。size,每个单元格的时间,每个单元格都代表一个时间,size*每个单元格的时间就是 一个周期。

重试队列

kafka没有重试机制不支持消息重试,也没有死信队列,因此使用kafka做消息队列时,需要自己实 现消息重试的功能。

实现

创建新的kafka主题作为重试队列:

  1. 创建一个topic作为重试topic,用于接收等待重试的消息。
  2. 普通topic消费者设置待重试消息的下一个重试topic。
  3. 从重试topic获取待重试消息储存到redis的zset中,并以下一次消费时间排序
  4. 定时任务从redis获取到达消费事件的消息,并把消息发送到对应的topic
  5. 同一个消息重试次数过多则不再重试

代码实现

1、 新建springboot项目

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.8.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.lagou.kafka.demo</groupId>
<artifactId>demo-retryqueue</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>demo-retryqueue</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>org.junit.vintage</groupId>
<artifactId>junit-vintage-engine</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka-test</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.73</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
</plugin>
</plugins>
</build>
</project>

2、 添加application.properties

# bootstrap.servers
spring.kafka.bootstrap-servers=node1:9092
# key序列化器
spring.kafka.producer.keyserializer=org.apache.kafka.common.serialization.StringSerializer
# value序列化器
spring.kafka.producer.valueserializer=org.apache.kafka.common.serialization.StringSerializer
# 消费组id:group.id
spring.kafka.consumer.group-id=retryGroup
# key反序列化器
spring.kafka.consumer.keydeserializer=org.apache.kafka.common.serialization.StringDeserializ
er
# value反序列化器
spring.kafka.consumer.valuedeserializer=org.apache.kafka.common.serialization.StringDeserializ
er
# redis数据库编号
spring.redis.database=0
# redis主机地址
spring.redis.host=node1
# redis端口
spring.redis.port=6379
# Redis服务器连接密码(默认为空)
spring.redis.password=
# 连接池最大连接数(使用负值表示没有限制)
spring.redis.jedis.pool.max-active=20
# 连接池最大阻塞等待时间(使用负值表示没有限制)
spring.redis.jedis.pool.max-wait=-1
# 连接池中的最大空闲连接
spring.redis.jedis.pool.max-idle=10
# 连接池中的最小空闲连接
spring.redis.jedis.pool.min-idle=0
# 连接超时时间(毫秒)
spring.redis.timeout=1000
# Kafka主题名称
spring.kafka.topics.test=tp_demo_retry_01
# 重试队列
spring.kafka.topics.retry=tp_demo_retry_02

3、 RetryqueueApplication.java

package com.lagou.kafka.demo;
import org.springframework.boot.SpringApplication;
import
org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class RetryqueueApplication {
public static void main(String[] args) {
SpringApplication.run(RetryqueueApplication.class, args);
}
}

4、 AppConfig.java

package com.lagou.kafka.demo.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import
org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
@Configuration
public class AppConfig {
@Bean
public RedisTemplate<String, Object>
redisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, Object> template = new
RedisTemplate<>();
// 配置连接工厂
template.setConnectionFactory(factory);
return template;
}
}

5、 KafkaController.java

package com.lagou.kafka.demo.controller;
import com.lagou.kafka.demo.service.KafkaService;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.concurrent.ExecutionException;
@RestController
public class KafkaController {
@Autowired
private KafkaService kafkaService;
@Value("${spring.kafka.topics.test}")
private String topic;
@RequestMapping("/send/{message}")
public String sendMessage(@PathVariable String message) throws
ExecutionException, InterruptedException {
ProducerRecord<String, String> record = new
ProducerRecord<>(
topic,
message
);
String result = kafkaService.sendMessage(record);
return result;
}
}

6、 KafkaService.java

package com.lagou.kafka.demo.service;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.stereotype.Service;
import java.util.concurrent.ExecutionException;
@Service
public class KafkaService {
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
public String sendMessage(ProducerRecord<String, String>
record) throws ExecutionException, InterruptedException {
SendResult<String, String> result =
this.kafkaTemplate.send(record).get();
RecordMetadata metadata = result.getRecordMetadata();
String returnResult = metadata.topic() + "\t" +
metadata.partition() + "\t" + metadata.offset();
System.out.println("发送消息成功:" + returnResult);
return returnResult;
}
}

7、 ConsumerListener.java

package com.lagou.kafka.demo.listener;
import com.lagou.kafka.demo.service.KafkaRetryService;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
@Component
public class ConsumerListener {
private static final Logger log =
LoggerFactory.getLogger(ConsumerListener.class);
@Autowired
private KafkaRetryService kafkaRetryService;
private static int index = 0;
@KafkaListener(topics = "${spring.kafka.topics.test}", groupId
= "${spring.kafka.consumer.group-id}")
public void consume(ConsumerRecord<String, String> record) {
try {
// 业务处理
log.info("消费的消息:" + record);
index++;
if (index % 2 == 0) {
throw new Exception("该重发了");
}
} catch (Exception e) {
log.error(e.getMessage());
// 消息重试
kafkaRetryService.consumerLater(record);
}
}
}

8、 KafkaRetryService.java

package com.lagou.kafka.demo.service;
import com.alibaba.fastjson.JSON;
import com.lagou.kafka.demo.entity.RetryRecord;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.common.header.Header;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.stereotype.Service;
import java.nio.ByteBuffer;
import java.util.Calendar;
import java.util.Date;
@Service
public class KafkaRetryService {
private static final Logger log =
LoggerFactory.getLogger(KafkaRetryService.class);
/**
* 消息消费失败后下一次消费的延迟时间(秒)
* 第一次重试延迟10秒;第 二次延迟30秒,第三次延迟1分钟...
*/
private static final int[] RETRY_INTERVAL_SECONDS = {10, 30,
1*60, 2*60, 5*60, 10*60, 30*60, 1*60*60, 2*60*60};
/**
* 重试topic
*/
@Value("${spring.kafka.topics.retry}")
private String retryTopic;
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
public void consumerLater(ConsumerRecord<String, String>
record){
// 获取消息的已重试次数
int retryTimes = getRetryTimes(record);
Date nextConsumerTime = getNextConsumerTime(retryTimes);
// 如果达到重试次数,则不再重试
if(nextConsumerTime == null) {
return;
}
// 组织消息
RetryRecord retryRecord = new RetryRecord();
retryRecord.setNextTime(nextConsumerTime.getTime());
retryRecord.setTopic(record.topic());
retryRecord.setRetryTimes(retryTimes);
retryRecord.setKey(record.key());
retryRecord.setValue(record.value());
// 转换为字符串
String value = JSON.toJSONString(retryRecord);
// 发送到重试队列
kafkaTemplate.send(retryTopic, null, value);
}
/**
* 获取消息的已重试次数
*/
private int getRetryTimes(ConsumerRecord record){
int retryTimes = -1;
for(Header header : record.headers()){
if(RetryRecord.KEY_RETRY_TIMES.equals(header.key())){
ByteBuffer buffer =
ByteBuffer.wrap(header.value());
retryTimes = buffer.getInt();
}
}
retryTimes++;
return retryTimes;
}
/**
* 获取待重试消息的下一次消费时间
*/
private Date getNextConsumerTime(int retryTimes){
// 重试次数超过上限,不再重试
if(RETRY_INTERVAL_SECONDS.length < retryTimes) {
return null;
}
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.SECOND,
RETRY_INTERVAL_SECONDS[retryTimes]);
return calendar.getTime();
}
}

9、 RetryListener.java

package com.lagou.kafka.demo.listener;
import com.alibaba.fastjson.JSON;
import com.lagou.kafka.demo.entity.RetryRecord;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.ZSetOperations;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
import java.util.Set;
import java.util.UUID;
@Component
@EnableScheduling
public class RetryListener {
private Logger log =
LoggerFactory.getLogger(RetryListener.class);
private static final String RETRY_KEY_ZSET = "_retry_key";
private static final String RETRY_VALUE_MAP = "_retry_value";
@Autowired
private RedisTemplate<String,Object> redisTemplate;
@Autowired
private KafkaTemplate<String, String> kafkaTemplate;
@Value("${spring.kafka.topics.test}")
private String bizTopic;
@KafkaListener(topics = "${spring.kafka.topics.retry}")
// public void consume(List<ConsumerRecord<String, String>>
list) {
// for(ConsumerRecord<String, String> record : list){
public void consume(ConsumerRecord<String, String> record) {
System.out.println("需要重试的消息:" + record);
RetryRecord retryRecord =
JSON.parseObject(record.value(), RetryRecord.class);
/**
* 防止待重试消息太多撑爆redis,可以将待重试消息按下一次重试时间分
开存储放到不同介质
* 例如下一次重试时间在半小时以后的消息储存到mysql,并定时从mysql
读取即将重试的消息储储存到redis
*/
// 通过redis的zset进行时间排序
String key = UUID.randomUUID().toString();
redisTemplate.opsForHash().put(RETRY_VALUE_MAP, key,
record.value());
redisTemplate.opsForZSet().add(RETRY_KEY_ZSET, key,
retryRecord.getNextTime());
}
// }
/**
* 定时任务从redis读取到达重试时间的消息,发送到对应的topic
*/
// @Scheduled(cron="2 * * * * *")
@Scheduled(fixedDelay = 2000)
public void retryFromRedis() {
log.warn("retryFromRedis----begin");
long currentTime = System.currentTimeMillis();
// 根据时间倒序获取
Set<ZSetOperations.TypedTuple<Object>> typedTuples =
redisTemplate.opsForZSet().reverseRangeByScoreWithScores(RETRY_KEY
_ZSET, 0, currentTime);
// 移除取出的消息
redisTemplate.opsForZSet().removeRangeByScore(RETRY_KEY_ZSET, 0,
currentTime);
for(ZSetOperations.TypedTuple<Object> tuple : typedTuples){
String key = tuple.getValue().toString();
String value =
redisTemplate.opsForHash().get(RETRY_VALUE_MAP, key).toString();
redisTemplate.opsForHash().delete(RETRY_VALUE_MAP,
key);
RetryRecord retryRecord = JSON.parseObject(value,
RetryRecord.class);
ProducerRecord record = retryRecord.parse();
ProducerRecord recordReal = new ProducerRecord(
bizTopic,
record.partition(),
record.timestamp(),
record.key(),
record.value(),
record.headers()
);
kafkaTemplate.send(recordReal);
}
// todo 发生异常将发送失败的消息重新发送到redis
}
}

10、 RetryRecord.java

package com.lagou.kafka.demo.entity;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.header.Header;
import org.apache.kafka.common.header.internals.RecordHeader;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.List;
public class RetryRecord {
public static final String KEY_RETRY_TIMES = "retryTimes";
private String key;
private String value;
private Integer retryTimes;
private String topic;
private Long nextTime;
public RetryRecord() {
}
public String getKey() {
return key;
}
public void setKey(String key) {
this.key = key;
}
public String getValue() {
return value;
}
public void setValue(String value) {
this.value = value;
}
public Integer getRetryTimes() {
return retryTimes;
}
public void setRetryTimes(Integer retryTimes) {
this.retryTimes = retryTimes;
}
public String getTopic() {
return topic;
}
public void setTopic(String topic) {
this.topic = topic;
}
public Long getNextTime() {
return nextTime;
}
public void setNextTime(Long nextTime) {
this.nextTime = nextTime;
}
public ProducerRecord parse() {
Integer partition = null;
Long timestamp = System.currentTimeMillis();
List<Header> headers = new ArrayList<>();
ByteBuffer retryTimesBuffer = ByteBuffer.allocate(4);
retryTimesBuffer.putInt(retryTimes);
retryTimesBuffer.flip();
headers.add(new RecordHeader(RetryRecord.KEY_RETRY_TIMES,
retryTimesBuffer));
ProducerRecord sendRecord = new ProducerRecord(
topic, partition, timestamp, key, value, headers);
return sendRecord;
}
}